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ABSTRACT 

The floating frame of reference formulation is currently the most widely used 
approach in flexible multibody simulations. The use of this approach, however, has been 
limited to small deformation problems. In this investigation, the use of the new absolute 
nodal coordinate formulation in the small and large deformation analysis of flexible 
multibody systems that consist of interconnected bodies is discussed. While in the 
floating frame of reference formulation a mixed set of absolute reference and local elastic 
coordinates are used, in the absolute nodal coordinate formulation only absolute 
coordinates are used. In the absolute nodal coordinate formulation, new interpretation of 
the nodal coordinates of the finite elements is used. No infinitesimal or finite rotations are 
used as nodal coordinates for beams and plates, instead global slopes are used to define 
the element nodal coordinates. Using this interpretation of the element coordinates beams 
and plates can be considered as isoparametric elements, and as a result, exact modeling of 
the rigid body dynamics can be obtained using the element shape function and the 
absolute nodal coordinates. Unlike the floating frame of reference approach, no 
coordinate transformation is required in order to determine the element inertia. The mass 
matrix of the finite elements is a constant matrix, and therefore, the centrifugal and 
Coriolis forces are equal to zero when the absolute nodal coordinate formulation is used. 
The generalized elastic forces, however, become highly nonlinear function of the system 
coordinates, and as such, little is to be gained from the use of the small strain 
assumptions. Another advantage of using the absolute nodal coordinate formulation in the 
dynamic simulation of multibody systems is its simplicity in imposing some of the joint 
constraints and also its simplicity in formulating the generalized forces due to spring- 
damper elements. The results obtained in this investigation shows an excellent agreement 
with the results obtained using the floating frame of reference formulation when large 
rotation-small deformation problems are considered. 



1. INTRODUCTION 

The formulation of the equations of motion of flexible multibody systems using 

the finite element method has been a challenging problem, particularly when 

conventional non-isoparametric elements such as beams and plates are used. The nodal 

coordinates of these widely use elements include infinitesimal rotations. As a result, exact 

modeling of the rigid body dynamics can not be obtained when these non-isoparametric 

elements are used [6]. Such a limitation poses a serious problem when flexible multibody 

dynamics are considered. Generally these systems consist of interconnected rigid and 

deformable bodies, each of which may undergo large rotations. For this reason, several 

formulations that lead to exact modeling of the rigid body inertia were proposed for the 

nonlinear dynamic analysis of flexible multibody systems. Among these formulations is 

the floating frame of reference approach [1-5] which can be used to obtain accurate 

modeling of the rigid body dynamics and also leads to zero strain under an arbitrary rigid 

body motion of the non-isoparametric finite elements. The floating frame of reference 

approach uses two sets of coordinates to describe the dynamics of deformable bodies that 

undergo large reference displacements. The large reference translations and rotations are 

described by a mixed set of absolute Cartesian and orientation coordinates defined in a 

global inertial frame of reference. The elastic displacements of the bodies are defined 

with respect to its coordinate system using the nodal coordinates of the finite elements. 

The body frame of reference is defined using an appropriate set of reference conditions 

that define an unique displacement field [5]. The equations of motion obtained using the 

floating frame of reference formulation exhibit a strong nonlinear inertia coupling 



between the reference and elastic coordinates. The mass matrix is highly nonlinear and 

the inertia forces include Coriolis and centrifugal forces, which are quadratic in the 

velocities. The stiffness matrix, on the other hand, takes a simple form and it is the same 

as the stiffness matrix that appears in structural mechanics. 

The use of two different types of frames of reference; global and local ( inertial 

and non-inertial), to describe two different sets of coordinates ( reference coordinates and 

elastic coordinates), leads to the complexity of the resulting inertia forces. If 

isoparametric finite elements, which have absolute nodal coordinates defined in the 

inertial frame of reference, are used to model the flexible bodies; much simpler 

expressions for the inertia forces can be obtained. Furthermore, the shape function and the 

nodal coordinates of the element can be used to obtain exact modeling of the rigid body 

dynamics provided that the finite element shape functions have a complete set of rigid 

body modes. In the absolute nodal coordinate formulation [7-8], a new interpretation of 

the nodal coordinates is used in order to develop new isoparametric beam and plate 

elements. Unlike the work of Simo and Vu-Quoc [9], no finite rotations are used as nodal 

coordinates, and instead global slopes are used as nodal coordinates. The use of finite 

rotations as nodal coordinates can lead to redundancy in representing the large rotation of 

the cross section of the finite element[7]. 

In addition to the fact that the absolute nodal coordinate formulation automatically 

captures the nonlinear effects arising from the coupling between different modes of 

displacements, the formulation of the joint constraints and forces becomes simpler when 

this new approach is used in flexible multibody dynamics. It is the objective of this 



investigation to examine and demonstrate the use of this new finite element procedure in 

the small and large deformation analysis of flexible multibody systems that consist of 

interconnected bodies. Comparison will be made with the floating frame of reference 

formulation, which is currently the most widely used computer procedure for the analysis 

of flexible multibody systems. Throughout the analysis presented in this paper, a two 

dimensional beam element is used for demonstration purposes. 

This paper is organized as follows. In Section 2, the absolute nodal coordinate 

formulation is presented, and the constant element mass matrix and nonlinear stiffness 

matrix are identified. In Section 3 the formulation of the generalized forces, when the 

absolute nodal coordinate formulation is used, is presented. It is shown in this section 

some of the fundamental differences between the absolute nodal coordinate formulation 

and other existing finite element procedures. Because of the use of global slopes as 

element nodal coordinates, new set of generalized moments must be used. In section 4, 

the formulation of the joint constraints in the absolute nodal coordinate formulation is 

discussed. Sections 5-7 demonstrate the equivalence of the absolute nodal coordinate 

formulation and the floating frame of reference approach. Examples are presented in 

Section 8 and the numerical results obtained using the absolute nodal coordinate 

formulation are compared with the results obtained using the floating frame of reference 

approach. Summary and conclusions drawn from the analysis developed in this paper are 

presented in Section 9. 



2. ABSOLUTE NODAL COORDINATE FORMULATION 

In the mixed finite element formulations, displacements and displacement 

gradients are used as nodal coordinates. These conventional finite element mixed 

formulations, however, have serious limitations when flexible multibody applications are 

considered. For instance, most of the mixed formulations were used in the framework of 

incremental procedure and the shape functions employed often do not have a complete set 

of rigid body modes. Furthermore, in structural dynamics applications mixed 

formulations are often used with lumped masses. When a lumped mass formulation is 

used with conventional beam elements, exact modeling of rigid body dynamics cannot be 

obtained. In the absolute nodal coordinate formulation used in this investigation, it is 

required that the element shape function has a complete set of rigid body modes that can 

describe arbitrary rigid body translational and rotational displacements. Global 

displacements and slopes are used as nodal coordinates. By so doing, exact modeling of 

the rigid body dynamics can be obtained when only a consistent mass formulation is 

used. 

In the absolute nodal coordinate formulation, the coordinates of the material 

points are defined in the global system. These absolute coordinates as shown in Fig. 1 are 

defined in terms of the element shape function and the vector of nodal coordinates as 

r= Vx   =Se (1) 
ry 



where r is the global position vector of an arbitrary point on the element, S is a global 

shape function that include a complete set of rigid body modes, and e is the vector of 

nodal coordinates that includes global displacements and slopes defined at the nodal 

points of the element. 

2.1. Displacement Field and Rigid Body Kinematics 

In this paper, a planar beam element is used as an example to demonstrate the use 

of the finite element absolute nodal coordinate formulation in flexible multibody 

applications. Since the coordinates of the material points in this formulation are defined 

in a global frame of reference, there is no reason to use different polynomials to 

interpolate the displacement components. In this investigation, a cubic polynomial is used 

for both components of the displacement. In this case, the element shape function and the 

vector of nodal coordinates are defined as 

s = 
l-3£2+2<f 0 l($-2?+?) 0 3£2-2<f 0 /(<f-<f) 0 

0 l-3£2+2<f 0 /(£-2,f + £3) 0 3<f-2<f 0 l{?-£ 
(2) 

e = [e,    e2    e3    e4    e5    e6    e1    ez] ■ (3) 

where the elements of the vector of nodal coordinates are defined as 

dr (x = 0) dr (x = 0) 
ei=r(x = 0),       e2=ry(X = 0l       «,=--£—, *4 =-^~ 

dr(x = l) dr(x = l) 
e=r{x = l),       e =r(x = l);       e=^— , e=-^—  5     * 6     y 7 dx 8 dx 

(4) 



where x is the spatial coordinate along the element axis. Note that in the absolute nodal 

coordinate formulation no infinitesimal rotations are used as nodal coordinates, instead, 

slopes are used. The initial values of the global slopes in the undeformed reference 

configuration can be determined using simple rigid body kinematics by utilizing the fact 

that Eq. 1 can be used to obtain exact modeling of the kinematics of rigid bodies. For 

instance, in an arbitrary undeformed reference configuration defined by the translations 

rx(x - 0) and ry(x = 0) and the rigid body rotation 8 the global position of an arbitrary 

point on the beam can be written as 

r(x) = Se = 
rx (x - 0) + x cos 0 

ry(x = 0) + x sin 9 (5) 

It follows that the global slopes in the undeformed reference configuration are 

defined as 

e3 = e7 = cos 0;      e4 = e8 = sin 0 (6) 

A similar procedure can be used to determine the global slopes in the case of three 

dimensional elements. 

2.2. Kinetic Energy 

The kinetic energy of the beam element is defined as 

T = UprTrdV = UT(lpSTSdv)e = UTMae (7) 



where Fis the volume, p is the mass density of the beam material, and Ma is the mass 

matrix of the element. Note that the mass matrix in Eq. 7 is symmetric and constant, and 

it is the same matrix that appears in linear structural dynamics. Using the shape function 

of Eq. 2, the mass matrix of the element can be evaluated as 

Ma = ^pSTSdV = m 

13 11/ 9 13/ —          0   0 0 0 
35 210 70 420 

13 11/ 9 13/   0   0 0 
35 

I2 
210 

n/ 
70 

l2 
420 

  0 0 0 
105 

I1 
420 

13/ 
140 

!2 
  0 0 
105 420 140 

13 
0 

11/ 
0 

35 210 

Symmetric 13 
35 

0 

I2 

105 

11/ 
210 

0 

I2 

105 

(8) 

where m is the mass of the beam and / is its length. It can be demonstrated that the use of 

this mass matrix leads to exact modeling of the rigid body inertia [8]. 

2.3 Strain Energy 

While the absolute nodal coordinate formulation leads to a simple expression for 

the inertia forces, the use of this formulation results in a relatively complex expression for 

the elastic forces. In order to demonstrate this fact, a simple linear elastic model based on 

the classical beam theory is used in this section. If point O shown in Fig. 1 is used as the 

reference point, the displacements of an arbitrary point on the beam relative to point O 

may be written as 



u 
wv 

u. (S2 -S20je_ 
(9) 

where S, and S2 are the rows of the element shape function matrix, and S^and S2o are the 

rows of the element shape function matrix defined at point O. In order to define these 

relative displacements in the element coordinate system , two unit vectors i and j along 

the element axis are defined as 

l = 
rA~rO 

rA~rO 

kx i (10) 

where k is an unit vector along the Z axis. The longitudinal and transverse deformations 

of the beam can then be defined as 

T'• u i-x 
T • 

u  J 
UJx+UyJy 

(11) 

The strain energy of the beam element due to the longitudinal and transverse 

displacements is given by: 

r 

°-il Ea\—t- 
[dx 

+ EI 
o u 

2^ 

v 
Kdx   , 

1     T 
dx = —t K e 

2 
J 

(12) 

where E is the modulus of elasticity, a is the cross sectional area, / is the second moment 

of area of the beam element, and Ka is the element stiffness matrix. This matrix is a 

nonlinear function of time. It can be shown that the strain energy can be expressed in 

terms of the following stiffness shape integrals: 



A   - — f1 AU ~    j   Jo 
'as.YYss^ 

Ea ., 
L21   --^-Jo 

d?>    Au=ffi 

dt.    ^=ft 

'dS^ 

K^J 

foe.   \ as 'as ^ 
H)\H 

Bn =^rlc 73  Jo 

ra2s,vrö2s,i 
3£ 

B 21  _    ,3   Jo 

\"b     J 

(' X2c   \ dzS 

V^   j 

A, = Ea\l
0 
'as/ 

5# 

^     B,2=^!c /3   Jo 

^52S ^ V9
2S ^ 

d? J I 5^ v^ y v1^ y 

<*£   B22=f £ 
/^O    V^2c    A 5ZS 

A2 = £A£ 

s2s, 

'as^ 
vuw 9£ 

V^2y 

d$     (13) 

V uh J 

Where the explicit forms of these matrices obtained using the shape function of Eq. 2 are 

given in the appendix of the paper. Using these stiffness shape integrals, the generalized 

elastic forces of the element can be calculated from 

fSU^ 
ydej 

= AH e/,2 + A22 e// + (A,2 + A21) eix i - A, ix - A21  + B„ ejx
2 + B22 ej2 + (BI2 + B21) ej\ j 

1 
+ [erAI1e/x+-er(A,2+A21)e;;,--A1

7e 

+ |erB1,eyi+i-er(B12+B2,)e^ 

Where 

fdi ^ 
+ ( ^22«', +-er(A12 + A21)ei, -A2

re 
(ft ^ 

\d*J 

{**. 
+ \eTB22ejy+UT(Bl2+B2l)ejx 

(14) 

f- 
T 

\diy) 

r 

= Z)[-(e6-e2)
2    (e.-eiXe6-e2)   0   0   (e6-e2)

2    -(e, -eje, -e2)   0   o]' 

= £»[(e5-e1Xe6-e2)   -(e3-e,)2    0    0    - (e5 -e,Xe6 ~c2)   (^-^i)2    °    °] 
T    (15) 

D = 
((e5-e,)2+(e6-e2)

2)3'2 



2.4. Equations of Motion 

Using the principle of virtual work in dynamics and the expression of the kinetic 

and strain energies given by Eq. 7 and Eq. 12, the equation of motion of the finite 

element can be written as 

Mae = Q (16) 

Where Q is the vector of generalized external nodal forces including the elastic forces. 

Note that centrifugal and Coriolis forces are equal'to zero since the mass matrix is 

constant. The equations of motion of the deformable body can be obtained by assembling 

the equations of its elements using a standard finite element procedure. 

3. FORMULATION OF THE GENERALIZED EXTERNAL FORCES 

It is clear from the analysis presented in the preceding section that there are 

several fundamental differences between the absolute nodal coordinate formulation and 

some of the existing finite element procedures. One of these differences is the fact that 

there is no need to use coordinate transformation in order to determine the element mass 

matrix. Another difference is attributed to the formulation of the stiffness matrix, which is 

highly nonlinear in the case of the absolute nodal coordinate formulation even in the case 

of simple linear elastic model. For this reason, little is to be gained from the use of small 

deformation assumptions. 

10 



Another fundamental difference is due to the nature of the coordinates used in the 

absolute nodal coordinate formulation. These coordinates do not include infinitesimal or 

finite rotations. As such, attention must be paid to the definition of the generalized forces 

associated with the global slopes of the finite element. In this section, the definition of the 

generalized forces in the absolute nodal coordinate formulation is discussed. 

3.1. Force Vector 

The virtual work due to an externally applied force F acting on an arbitrary point 

on the element is given by F^Sr, where r is the position vector of the point of application 

of the force and 5r is the virtual change in the vector r. In order to obtain the generalized 

forces associated with the absolute nodal coordinates it is necessary to express 8r in terms 

of the virtual displacements of these nodal coordinates. To this end, one can write 

FTSr = FTSSe = Q/Se (17) 

Where Q^ = S^F is the vector of generalized forces associated with the element nodal 

coordinates. For example, the virtual work due to the distributed gravity of the finite 

element can be obtained using the shape function of Eq. 2 as 

|[0   -pg] SSe dV = mg 
1 / 1    n / 

0 —   0 (J —   0 
2 12 2 12 

<5e (18) 

Which defines the vector of generalized distributed gravity forces as 

QF =mg 
1 / 1 

0 
2 12J 

0   -I   o   -—   0   --   0   — (19) 
2 12 ~ 

11 



3.2. Moment 

When a moment M acts at a cross section of the beam, the virtual work due to this 

moment is given by MSa, where a is the angle of rotation of the cross section. The 

orientation of a coordinate system whose origin is rigidly attached to this cross section 

(see Fig. 1) can be defined using the following transformation matrix: 

cosa   -sin a 

sin a    cos a 

dr^   _drL 

dx        dx 

dx       dx 

d = 
'dO 
\dx j 

2 f AT,     \ 

+ 
KdX; 

(20) 

Using the elements of the planar transformation matrix given in the preceding 

equation, one has 

sin a = d 2 

ydXj 

\f ^   \ 
cos a = d 2 

Kdx j 
(21) 

Using these two equations, it can be shown that 

5a = ■ 
dx 

'dr.^ 

v5xy dx 
X 

\dx) 
(22) 

If the concentrated moment M is applied, for example, at node O of the element, 

the generalized forces due to this moment are defined as 

12 



Q M 0   0 
-Me.     Me, 

0   0   0   0 (23) 

3.3. Spring-Damper Forces 

The formulation of the generalized forces due to a spring-damper element 

connecting two finite elements is very simple as compared to the floating frame of 

reference formulation which leads to a highly nonlinear complex expression for these 

forces [5]. In the absolute nodal coordinate formulation, the generalized forces due to a 

spring-damper element take a simple form due to the fact that absolute coordinates are 

used. If a and b are the nodes to which the ends of the spring-damper element are 

attached, the generalized forces acting at node b simply take the form 

QSD - * 
<-ex" 

Lc2 
+ c 

ex   -ex 

e a -e 
(24) 

Where k and c are the spring and damping constants, respectively. 

4. FORMULATION OF CONSTRAINTS 

The formulation of many of the constraints equations that describe mechanical 

joints in flexible multibody systems become relatively simple when the absolute nodal 

coordinate formulation is used. In many cases, these constraint equations take a complex 

nonlinear form when the floating frame of reference approach is used. This mainly due to 

the fact that in the floating frame of reference formulation, two sets of coordinates 

13 



(reference and elastic) defined in two different frames of reference (global and body) are 

used. In the absolute nodal coordinate formulation, only one set of absolute coordinates 

defined in one global coordinate system is used. As a consequence, many of the 

constraint equations become simple and linear. For instance, the revolute joint 

constraints, which are highly nonlinear in the floating frame of reference formulation [5], 

become simple and linear when the absolute nodal coordinate formulation is used. Figure 

2 shows two elements i and/, which are connected, by a revolute joint at point P. The 

constraint equation for the revolute joint can be written as 

r/ = r/ (25) 

Which can be written in terms of the element coordinates as 

S},e' = SJ
Pe

J (26) 

Where S'P and Sj, are the shape functions of the elements / andy evaluated at point P, and 

ezand ef are the vectors of nodal coordinates of the two elements. If point P is selected as 

a nodal point on the two elements, the constraint equation of the revolute joint reduce to 

e\-e{ 
0 (27) 

Where e'5 and e'6 are the absolute translational nodal coordinates of element / at node P, 

and e{ and el are the absolute translational nodal coordinates of element/ at node P. 

14 



5. COMPARISON WITH THE FLOATING FRAME OF REFERENCE 

FORMULATION 

In the floating frame of reference formulation, not all coordinates represent 

absolute variables, since the configuration of the body is described using a mixed set of 

absolute reference and local deformation coordinates. The reference coordinates define 

the location and the orientation of a selected body coordinate system. The deformation of 

the body is described using a set of local shape functions and a set of deformation 

coordinates defined in the body coordinate system. In the floating frame of reference 

formulation, it is assumed that there is no rigid body motion between the body and its 

coordinate system. Using Fig. 1 and the reference and deformation coordinates, the global 

position vector of an arbitrary point on the centerline of the beam element can be written 

as [5] 

r = R + Au (28) 

Where R= R(0 defines the global position vector of the origin of the selected beam 

coordinate system, A = A(0 is the transformation matrix that defines the orientation of 

the selected beam coordinate system with respect to the inertial frame, and u = u(x,t) is 

the local position vector of the arbitrary point defined with respect to the origin of the 

beam coordinate system. The local position vector u may be represented in terms of local 

shape functions S/(x) as 

u(x,0 = S/(x)q/(0 (29) 

15 



where q/t) is the vector of time dependent deformation coordinates which can also be 

used in the finite element formulation to interpolate the local position as well as the 

deformation. When the kinematic description of Eq. 28 is used, it is assumed that there is 

no rigid body motion between the beam and its coordinate system. As a consequence, it is 

required that the local shape function matrix S/(x) contains no rigid body modes. Using 

Eq. 28 and 29, the motion of the flexible beam can be described using the floating frame 

of reference formulation as 

r = R + AS/q/ (30) 

where the vector q/t) describes the local position and the deformation of an arbitrary 

point [5], and the vector 

q,(0 = 
'm' 
e{t)_ 

(31) 

describes the reference motion. In Eq. 31, 6 is the angle that defines the orientation of the 

beam coordinate system. Therefore, the vector of generalized coordinates of the beam 

used in the floating frame of reference formulation can be written in a partitioned form as 

q = [Rr    0   qT]T = [q?    q;f (32) 

Using Eq. 30 and the coordinate partitioning of Eq. 32, it can be shown that the 

mass matrix of the deformable beam in the case of the floating frame of reference 

formulation can be written in a partitioned form as [5] 

16 



M, (33) 

Unlike the absolute nodal coordinate formulation which leads to a simple mass 

matrix, the mass matrix in the preceding equation is highly nonlinear in the coordinates 

Q = [^r    Q/J as ^e result of the dynamic coupling between the reference coordinates qr 

and the deformation coordinates q/-. In the case of planar motion, one has 

q,=[Rx    Ry    0]T,    A: 
cos9   -sin9 

sin#    cos 9 
(34) 

In this case of planar motion, it can be shown that the nonlinear mass matrix and 

the Coriolis and centrifugal forces of the finite element can be expressed in terms of the 

following constant inertia shape integrals [5]: 

S = lpS,dV,    mff = ^pSjS,dV,    S = I fiSf IS, dV (35) 

Where pand Fare the mass density and volume of the element, and 

1 = 
0     1' 

-1   0 
(36) 

By establishing the relationship between the coordinates used in the floating 

frame of reference formulation and the coordinates used in the absolute nodal coordinate 

formulation, the nonlinear mass matrix of Eq. 33 can be obtained using the constant mass 

matrix of Eq. 8. 

17 



6. RELATIONSHIP BETWEEN THE COORDINATES 

In the absolute nodal coordinate formulation, beams and plates can be considered 

as isoparametric elements. Using this fact, the equivalence between the floating frame of 

reference formulation and the absolute nodal coordinate formulation can be demonstrated 

and used to examine the effect of using the consistent mass distribution on the inertia 

representation of deformable bodies that undergo large reference displacements. In order 

to demonstrate the equivalence of the floating frame of reference formulation and the 

absolute nodal coordinate formulation, the relationship between the absolute and local 

slopes is first defined and then used to establish the relationship between the coordinates 

used in the two different formulations. In this paper, as an example, the cubic 

polynomials will be used to equally represent the displacement components of the beam 

element. The procedure developed in this paper, however, can be applied to other 

interpolating functions, provided that the global shape function has a complete set of rigid 

body modes. 

6.1. Slope Relationship 

Using Eq. 28, the global position vector of an arbitrary point on the beam element 

can be written using the floating frame of reference formulation as 

r(x,r) = 
Rx + ux cos 0 - uy sin 0 

i?„ +ur sin^ + ^costf y x y 

(37) 

where ux and uy are the position coordinates of the arbitrary point defined with respect to 

the beam coordinate system. It follows in the case of a slender beam element that 



-^ = -^-cos# ^sin# 
fix      fix fix 
dr      dux   .        du 
—?- = —-smO + —-cos<9 
fix      fix fix 

(38) 

This slope relationship plays a fundamental role in defining the relationship 

between the coordinates used in the absolute nodal coordinate formulation and the 

coordinates used in the floating frame of reference formulation. 

6.2. Coordinate Transformation 

In the remainder of this section, we develop the relationship between the 

coordinates used in the floating frame of reference formulation and the coordinates used 

in the absolute nodal coordinate formulation. In the case of the absolute nodal coordinate 

formulation, we use the global element shape function defined by Eq. 2. In the floating 

frame of reference formulation, we assume that the origin of the beam coordinate system 

is located at point O and one of the axes connects points O and A. In this case, the local 

shape function can be obtained from the global shape function of Eq. 2 as 

S,= 
'/(£-2£2+£3) 0 3<f-2f    l{?-?) 0 

o        i(z-2?+43)      o o      i{?-e) 
(39) 

Note that this local shape function does not include any rigid body modes. The 

vector qf in this case can be defined as 

q/=[?i    li    %    <JA    95f (40) 

19 



Where q3 is the local x coordinate of the node at A defined in the beam coordinate 

system, and 

duAx = 6)        _duy(x = 0)       _dux{x = l)    n      duy(x = l) 
qx~   dx   ' *—&— q"~~^r~' q5-~~Ex~~ 

(41) 

The vector e of Eq. 3 used in the absolute nodal coordinate formulation can be 

expressed in this case in terms of the component of the vector 

q = [Rx    Ry    6   qx    q2    q3    qA    q5] (42) 

of the floating frame of reference formulation using Eq. 38 as 

V 
e2 

£3 

e4 
= 

e5 

e6 

el 

-e*„ 

Rx 

R> 

<ll cos0-q2 sin 6 

<l\ sin 0 + q2 cos 6 

R, + q3 cos 9 

R> + q3 sin 6 

^4 cosß-q5 sin 6 

?4 sin 6 + q5 cos 6 

(43) 

Using this vector, it can be shown that 

Se = R + AS,q7 = r (44) 

This equation demonstrates the equivalence of the kinematic descriptions used in 

the floating frame of reference formulation and the absolute nodal coordinate 

formulation. Therefore, the coordinate transformation of Eq. 43 can be used to obtain the 
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nonlinear mass matrix and the inertia shape integrals used in the floating frame of 

reference formulation from the constant mass matrix used in the absolute nodal 

coordinate formulation, as demonstrated in the following section using the consistent 

mass formulation. 

7. EQUIVALENCE OF THE INERTIA FORCES 

The absolute nodal coordinate formulation leads to a constant mass matrix and 

zero Coriolis and centrifugal force vector. The floating frame of reference approach, on 

the other hand leads to a complex highly nonlinear mass matrix and highly nonlinear 

Coriolis and centrifugal force vectors. Nonetheless, the inertia forces obtained using the 

two formulations are equivalent as will be demonstrated in this section. In the following 

section, several applications will be used to compare the results obtained using the two 

methods. 

Exact rigid body motion can be described using the absolute nodal coordinate 

formulation, only when a consistent mass approach is used. It will be demonstrated in this 

section that, when consistent mass approach is used, the nonlinear mass matrix and the 

inertia shape integrals of the floating frame of reference approach can be systematically 

obtained using the coordinate transformation presented in the preceding section. Equally 

important, the inertia mass matrix of the rigid body can also be obtained using a similar 

transformation. 
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Using the coordinate partitioning of Eq. 32, it can be shown that the mass matrix 

of the deformable beam element, in the floating frame of reference formulation, can be 

expressed in terms of the inertia shape integrals of Eq. 35 as [5] 

M, 

ml 

Symmetric 

A^Sq^      AS 

q/m#qy    q^S 

m I 

(45) 

Where I in this equation is a 2x2-identity matrix, m is the mass of the element, and Ae is 

the partial derivative of the transformation matrix A with respect to the orientation 

coordinate 9. The velocity transformation between the coordinates used in the two 

formulations can be written as 

e = Bq = [BÄ    B,    Bf] 

R 

9 (46) 

where B is a velocity transformation matrix. Let Ma be the mass matrix obtained using 

the absolute nodal coordinate formulation ( Eq. 9), the mass matrix M/ that results from 

the use of the floating frame of reference formulation can be simply obtained as 

Mf = BrMaB = 

B^MJB,    B^MflB, 

B^VI „B d1,M-a* 

Symmetric 

B;MöB/ 

B,rMflB7 

B;M0B7 

(47) 

The elementary shape integrals of Eq. 35 can be determined by comparing Eqs. 45 

and 47. The use of this procedure shows that the nonlinear mass matrix and the inertia 
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shape integrals of the floating frame of reference formulation can be systematically 

evaluated using the constant mass matrix Ma and the velocity transformation matrix B as 

demonstrated by the following example. 

7.1. Cubic Interpolating Polynomials 

Using the local shape function of Eq. 39 and the definitions of the constant 

matrices given by Eq. 35, the inertia shape integrals that appear in the nonlinear mass 

matrix of the floating frame of reference formulation can be evaluated as 

S= IpS dV = m 

12 

7    0   6-/0' 

0/00-/ 

M if l&TSdV: m 

I2 13/ I2 

0 0 
105 

I2 
420 140 

I2 

0 
105 

0 0 
140 n/ 13 11/ 

0 0 
420 35 210 

I2 11/ I2 

0 0 
140 

}2 
210 105 

I2 

0 0 0 
140 105 

(48) 

S= jvpSTISdV=m 

105 

0 

.. 0 

140 

i_ 
105 

0 

13/ 
420 _£_ 
140 

0 

0 

13/ 
420 

0 

0 

11/ 

210 

0 

£_ 
140 
11/ 
210 

0 

_f_ 
105 

140 

0 

11/ 

210 

105 

0 
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Differentiating Eq. 43 with respect to time, one obtains 

e = Bq = 

10 0 0 

0   1 0 0 

0   0 -q sind-q cos9 cos#   -s'mO 

0   0     q cosd-q sin# sin#     cos8 

1 0 -q3sin0 0 

0 1 q3cos0 0 

0 0 -q s'mß-q cosd? 0 

0 0 q cos0-q sin# 0 

0 0 

0 0 

sin 0 0 

)S# 0 

0 cos# 

0 sin# 

0 0 

0 0 

0 0 ~R ' 
X 

0 0 R 
y 

0 0 0 

0 0 
*i 

0 0 
% 

0 0 
% 

cos# -sin# 
<?4 

sin# COS# 
.%. 

(49) 

which defines the velocity transformation B as 

B = 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 -qx sm.9-q2 cos6 cos# -sin 6 0 0 0 

0 0 qx cos 9-q2 sin 6 sin 6 cos# 0 0 0 

1 0 -q3 sin 6 0 0 cos# 0 0 

0 1 q3 cos# 0 0 sin# 0 0 

0 0 -q4 s'mß-q5 cos# 0 0 0 cos# -sin# 

0 0 q4 cosß-q5 sin£? 0 0 0 sin 6 cos# 

(50) 

Using this matrix and Eq. 47, it can be shown that 
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Mf = BrMflB = 

ml 

'--  o 
12 

o  mi o 
12 

"")/ 

__/*_ 
105 

0 

13/ 

420 

140 

0 

0 

___ 
105 

0 

0 

~140 

T   ~~12 

0 

0 

m/ 

12. 

13/ 
420 

0 

_13 •- 

35 
11/ 

210 

0 

Symmetric 

__r_ 
140 

0 

11/ 

210 
v_ 

105 

0 

'ml 
0 

ml 

m ml 
0 

ml 1/ A 12 T 12 

0 0 0 
12 "TT. 

0 0 
I2 

105 
0 0 

_2l 
140 

I2 I2 13/ i2 
______  » 0 0 

140 
7" 

105 
13/ 

420 140 
11/ 11/ 0 If mqf 0 

420 
I2 

0 
210 210 

I2 

0 0 
140 

0 0 
105 

I2 I1 11/ I2 

    0 0 
105 . . 140 210 105 

I2 

0 
13/ I2 

0 
105 

/2 420 140 
I1 

U To? 0 0 
140 

13/ 
0 

13 11/ 
0 

420 35 210 
I1 11/ I2 

0 0 
140 

I2 
210 105 

I2 

0 
140 

0 0 To? 
(51) 

Comparing this matrix with Eq. 45, the shape integrals presented in Eq. 48 can be 

easily identified, demonstrating the equivalence of the inertia forces used in the two 

formulations. This example also demonstrates that the nonlinear mass matrix and all the 

inertia shape integrals of the floating frame of reference formulation can be obtained from 

the constant consistent mass matrix used in linear structural dynamics. 
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7.2. Rigid Body Inertia 

In the case of the consistent mass formulation, the exact rigid body inertia of the 

beam can be obtained as a special case of the more general development presented in this 

section. In the case of a rigid body motion, one has 

<l\ = 94 = 1»    q*=h    <li = Qs = ° (52) 

In this special case, the transformation of Eq. 49 reduces to 

e = Bq 

1 0 0    " 

0 1 0 

0 

0 

0 

0 

-sin 9 

cos# 
K 
9 

1 

0 

0 

1 

-I sin 9 

I cos 9 

0 0 -sin 9 

0 0 cos 9 

(53) 

Using the velocity transformation matrix in this equation and the mass matrix Ma 

of Eq. 8, it can be shown that in the case of a rigid body motion the mass matrix of the 

element reduces "to 

Mf=BTMaB = m 

1 

0 

0 

1 

/ 
sin# 

—sin/9   — cos9 
2 2 

-cos 9 

3 

(54) 
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8. APPLICATIONS 

In order demonstrate the use of the absolute nodal coordinate formulation in the 

dynamic simulation of flexible multibody systems, two examples are considered in this 

section. The results obtained using the absolute nodal coordinate formulation are 

compared with the results obtained using the floating frame of reference formulation. The 

two examples considered are the free falling of a flexible pendulum under its own weight, 

and a flexible slider-crank mechanism driven by a moment applied to the crankshaft. 

Both the crankshaft and the connecting rod of the slider-crank mechanism are assumed to 

be flexible bodies. It is important, however, to point out that the floating frame of 

reference formulation can only be used in the case of small deformation because the 

deformation of the bodies are expressed in terms of mode shapes. The absolute nodal 

coordinate formulation, on the other hand, can be used in the small as well as in the large 

deformation analysis. 

8.1. Flexible Pendulum 

The first example considered in this section is the free falling of the flexible 

pendulum shown in Fig. 3. The pendulum, which is horizontal in its initial position, falls 

under the effect of gravity. The beam has a length of 0.4 m, a cross sectional area of 

0.0018 m2, a second moment of area of 1.215 E-08 m4, a mass density of 5540 Kg/m3 and 

a modulus of elasticity of 1.0 E 09 N/m2. The beam is divided into 10 elements. In the 

floating frame of reference formulation, 10 elastic modes are used to describe flexibility 

of the pendulum rod. The body frame of reference of the flexible pendulum is assumed to 
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be rigidly attached to its end at the pin joint. Note that in the absolute nodal coordinate 

formulation 42 degrees of freedom are used, as compared to 13 coordinates in the floating 

frame of reference formulation, 10 of them describe the elastic deformation. 

Figure 4 shows the angular orientation of the flexible pendulum versus time 

obtained using the two formulations. A very good agreement can be observed between 

the two methods. Figure 5 shows the transverse displacement of the tip node of the 

pendulum versus time. The results presented in this figure shows a good agreement 

between the absolute nodal coordinate formulation and the floating frame of reference 

formulation. 

8.2. Flexible Slider-Crank Mechanism 

The second example used in this section to demonstrate the use of the absolute 

nodal coordinate formulation in the simulation of flexible multibody systems is the 

flexible slider-crank mechanism shown in Fig. 6. The connecting rod is assumed to be 

much more flexible than the crankshaft and the slider block is assumed to be rigid and 

massless. In the initial position, both the connecting rod and crankshaft are assumed to be 

horizontal. The mechanism is assumed to be driven by a moment applied at the 

crankshaft. The crankshaft has a length of 0.152 m, a cross sectional area of 7.854E-05 

m2, a second moment of area of 4.909E-10 m4, a mass density of 2770 Kg/m3 and a 

modulus of elasticity of 1.0 E 09 N/m2. The connecting rod is a beam of length 0.304 m, 

and has the same cross sectional dimension and material properties as the crankshaft, with 

the exception of the modulus of elasticity, which is assumed to be 0.5 E 08 N/m2. In the 
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dynamic model used in this study, the crankshaft is divided into three finite elements and 

the connecting rod is divided into eight elements. In the floating frame of reference 

formulation, three mode shapes are used to describe the flexibility of the crankshaft and 

five mode shapes are used for the connecting rod. 

Two simulation cases were performed. In the first case, the moment applied at the 

crankshaft is given by 

M(t) = 0.01 
/   \ 

1 — g   0.167* Nm (55) 

In the second case, the moment is assumed to be 

M{t) 
0.01 0.167* Nm    t < 0.7s 

t > 0.7 s 
(56) 

Two coordinates are used to compare the results obtained using the absolute nodal 

coordinate formulation and the floating frame of reference formulation. These are the X 

position of the slider block and the transverse deformation of the middle point of the 

connecting rod. Figures 7 and 8 show the slider block position in the two cases of the 

applied moments. These two figures show good agreement between the results obtained 

using the absolute nodal coordinate formulation and the floating frame of reference 

approach. Figures 9 and 10 show the transverse deformation of the mid point of the 

connecting rod. In the first case of the applied moment, when the velocity of the system 

increases as well as the inertia forces, the deformation becomes relatively large, and 
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differences between the solutions obtained using the two formulations can be observed. 

In the second case of the applied moment the transverse deformation remains relatively 

small. In this case, excellent agreement between the two formulations can be observed, as 

shown in Fig 10. The only difference is that the solution obtained using the absolute 

nodal formulation has high frequency signals as the result of including more degrees of 

freedom as compared to the floating frame of reference formulation. 

9. SUMMARY AND CONCLUSIONS 

The concerns regarding the use of the classical finite element formulation in the 

large deformation and rotation analysis of flexible multibody systems are attributed to 

two main reasons. First, in the classical finite element literature, infinitesimal rotations 

are used as nodal coordinates in the case of beams and plates. Such a use of coordinates 

does not lead to the exact representation of a simple rigid body motion as recently 

demonstrated. Secondly, lumped mass techniques are used in many finite element 

formulations and computer programs to describe the inertia of deformable bodies. In this 

paper, the effect of using the consistent mass formulation on the structure of the nonlinear 

dynamic equations of deformable bodies that undergo large reference displacements is 

examined. To this end, the absolute nodal coordinate formulation, which can be 

efficiently used in the large rotations and deformations of deformable bodies that undergo 

arbitrary displacements, is utilized. In this formulation, no infinitesimal or finite rotations 

are used as nodal coordinates, instead the slopes and the displacements at the nodal points 

30 



are used as element nodal coordinates. Crucial to the success of using this new 

formulation, however, is the use of a consistent mass approach. This is a necessary 

requirement, which guarantees that exact modeling of the rigid body inertia can be 

obtained when the structures rotate as rigid bodies. In this paper, the equivalence of the 

absolute nodal coordinate formulation and the floating frame of reference formulation 

which is widely used in flexible multibody simulations is further utilized in order to 

compare analytically and numerically two different procedures which can be efficiently 

used in flexible multibody simulations. 

In the absolute nodal coordinate formulation, a new interpretation for the nodal 

coordinates is used. By using this new interpretation of the coordinates, a constant mass 

matrix can be obtained and as a result the Coriolis and centrifugal forces are equal to 

zero. The elastic forces, on the other hand, are highly nonlinear functions of the element 

coordinates. Therefore, little is to be gained by using the small deformation assumptions. 

The absolute nodal coordinate formulation can be effectively used in the large 

deformation problems as well as flexible multibody applications as demonstrated in this 

paper. In addition to the constant simple mass matrix that appears in this formulation, the 

formulation of some of the joint constraints as well as forces can be very simple as 

compared to the floating frame of reference approach. Because of the nature of the 

coordinates used in the floating frame of reference formulation, such a method has been 

only used in the small deformation analysis of flexible multibody systems. The absolute 

nodal coordinate formulation does not suffer from this limitation and can be used in the 

small and large deformation analysis of flexible multibody systems. The applications 
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used in this paper to compare the results obtained using the absolute nodal coordinate 

formulation and the results obtained using the floating frame of reference approach show 

excellent agreement between the two methods in the analysis of small deformations. 

Discrepancies can be observed between the results obtained using the two methods as the 

deformation increases. 
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APPENDIX 

STIFFNESS SHAPE INTEGRALS 

The definition of the matrices that appear in the elastic forces can be made simpler 

if the nodal coordinates are rearranged as: 

"e = [e,    e3    e5    e7    e2    e,    e6    es]
r =[ex    eyf (57) 

Define the matrix A and B as follows: 
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A = Ea 

5/ 10 5/ 
1 2/ 1 

10 15 10 
6 1 6 
5/ 10 5/ 

1 / 1 

10 30 10 

10 
__/_ 

30 _J_ 
10 

2/ 
15 

B = EI 

12 6 12 6 
I3 

6 
/2 

4 
/3 

6 
I2 

2 
I2 

12 
/ 
6 

/2 

12 
I 
6 

> 
6 

/2 

2 
/3 

6 
/2 

4 
/2 / /2 / 

(58) 

These matrices can be considered as the axial and bending stiffness matrices that 

appear in linear structural dynamics. By using the arrangement defined in Eq. 57 and the 

matrices in Eq. 58, the stiffness shape integrals that appear in the expression of the elastic 

forces are 

and: 

A 0 

0 0 

B 0 

0 0 

AT,   — i. 22 

B 22 

"0    0" 

0   A »     An ~ 
"0 A" 

A    0 

"0    0" 

0   B >          B12  = 

"0 B" 

B   0 

A{=[-Ea   Ea   0   0   0   0   0   of; 

A2=[0   0   0   0   -Ea   Ea   0   of 

(59) 

(60) 
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Figure 1. Planar Beam Element 
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Figure 4. Angular Orientation of the Pendulum. 
Absolute Nodal Coordinate Formulaiton: '—\ 
Floating Frame of Reference Formulation: '... * 
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Figure 5. Transverse Deformation of the Tip Point of the Pendulum. 
Absolute Nodal Coordiante Formulation: ;—', 
Floating Frame of Reference Formulation: \.. * 



Figure 6. Slider Crank Mechanism. 
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Figure 7. Coordinate of the Slider Block ( Moment Defined by Eq. 55). 
Abslolute Nodal Coordinate Formulation: ;—*. 
Floatina Frame of Reference Formulation: \.. * 



Figure 8.Coordinate of the Slider Block ( Moment Defined by Eq. 56). 
Abslolute Nodal Coordinate Formulation: '—', 
Floating Frame of Reference Formulation: '...' 
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Figure 9. Transverse Deformation of the Mid Point of the Connecting Rod 
(Moment Defined by Eq. 55) 

Abslolute Nodal Coordinate Formulation: '—', 
Floating Frame of Reference Formulation: '... * 
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Figure 10. Transverse Deformation of the Mid Point of the Connecting Rod 
(Moment Defined by Eq. 56) 

Abslolute Nodal Coordinate Formulation: '—', 
Floating Frame of Reference Formulation: '...' 


